This is titled "Storm, Sepia Approach". The tile set could have made a hexameric tiling starting with the center hexagon. I forced the off-balance tri-radial asymmetry.
Gratuitous link: I suggest you look at the paintings of Janice Biala.
Thursday, September 24, 2009
Sunday, September 20, 2009
Pentamerism
This is the only non-periodic tiling I've done that is pentaradial. It has five polygons, but the square and rectangle (which has an aspect ratio of 1:1.618033989) can only be used along the five rows extending from the center pentagon. If I attempt to use them anywhere else, a gap is created.
Monday, September 14, 2009
Camouflage
In 2007, the Portland Art Museum exhibited Camouflage, an exhibition of eight paintings that explored artists’ use of pattern. The exhibit included a large camouflage pattern painting from a series that Andy Warhol did around 1986.
In his 1940 essay, A Mathematician's Apology, G. H. Hardy (full text here) discusses, among other things, pure versus applied mathematics with one difference being the application of mathematics to war. He stated that "a mathematician was a maker of patterns of ideas, and that beauty and seriousness were the criteria by which his patterns should be judged".
In Arthur Danto's The Transfiguration of the Commonplace: A Philosophy of Art, and 25 years later in his 2008 reply to his critics in CA online, Danto uses Warhol's Brillo box to discuss what makes an object an art work. (See Ontology, Criticism, and the Riddle of Art Versus Non-Art in The Transfiguration of the Commonplace. Contemporary Aesthetics, Volume 6, 2008.)
The Warhol camouflage series is interesting in that it turns a pattern designed for war back into art. Hardy said "A painting may embody [an] 'idea', but the idea is usually commonplace and unimportant." I wonder what he would have thought about the Warhol painting's ability to wrap all these concepts — beauty, seriousness, the ontology of art — in one art work.
Here's an unrelated, gratuitous Bezier curve image from a series:
In his 1940 essay, A Mathematician's Apology, G. H. Hardy (full text here) discusses, among other things, pure versus applied mathematics with one difference being the application of mathematics to war. He stated that "a mathematician was a maker of patterns of ideas, and that beauty and seriousness were the criteria by which his patterns should be judged".
In Arthur Danto's The Transfiguration of the Commonplace: A Philosophy of Art, and 25 years later in his 2008 reply to his critics in CA online, Danto uses Warhol's Brillo box to discuss what makes an object an art work. (See Ontology, Criticism, and the Riddle of Art Versus Non-Art in The Transfiguration of the Commonplace. Contemporary Aesthetics, Volume 6, 2008.)
The Warhol camouflage series is interesting in that it turns a pattern designed for war back into art. Hardy said "A painting may embody [an] 'idea', but the idea is usually commonplace and unimportant." I wonder what he would have thought about the Warhol painting's ability to wrap all these concepts — beauty, seriousness, the ontology of art — in one art work.
Here's an unrelated, gratuitous Bezier curve image from a series:
Wednesday, September 2, 2009
Here are a few close-up pictures of a painting (a polyptych) just under way. It will resemble the digital print, Slip, but will undoubtedly have a completely different color scheme. I shot these as close as I could to show what I look at all day while I'm laying down these outlines in white on white oil paint. All the curves are paint applied with a small brush along pencil lines. The pencil lines are plotted/interpolated Bezier curves. That is, I plot about ten points per curve, and interpolate with ships curves or other French curves. The plots follow a spreadsheet of grid points that I exported from the original digital print program data.
Subscribe to:
Posts (Atom)